Bram De Jaegher, Ingmar Nopens
juliacon 2019
Bram De Jaegher, Ingmar Nopens
juliacon 2019
$ F_{p,i} = \sum{F_{p,j}} + F_{mem} + F_d \\ + F_{am} + F_h + F_l + F_e + ... $
→ need for an efficient description!
using Flux
ann = Chain(Dense(4,8,σ),
Dense(8,8,σ),
Dense(8,8,σ),
Dense(8,1))
using DifferentialEquations, DiffEqFlux
function dudt_(u::TrackedArray, p, t)
Flux.Tracker.collect([ann(u)[1])
end
prob = ODEProblem(dudt_, x, (t0, tend), p)
using DataFrames, Plots, CSV
using Flux
ann = Chain(Dense(4,8,σ),
Dense(8,8,σ),
Dense(8,8,σ),
Dense(8,1))
using DifferentialEquations, DiffEqFlux
function dudt_(u::TrackedArray, p, t)
Flux.Tracker.collect([ann(u)[1])
end
prob = ODEProblem(dudt_, x, (t0, tend), p)
using DataFrames, Plots, CSV
using Flux
ann = Chain(Dense(4,8,σ),
Dense(8,8,σ),
Dense(8,8,σ),
Dense(8,1))
using DifferentialEquations, DiffEqFlux
function dudt_(u::TrackedArray, p, t)
Flux.Tracker.collect([ann(u)[1])
end
prob = ODEProblem(dudt_, x, (t0, tend), p)
using DataFrames, Plots, CSV
$$\cfrac{\mathrm{d}R(t)}{\mathrm{d}t} = \mathrm{ANN}\left(R(t), \, i, \, c_e, \, v\right)$$
Data: Korngold, E. et al. (1970)$$\cfrac{\mathrm{d}R(t)}{\mathrm{d}t} = \mathrm{ANN}\left(R(t), \, i, \, c_e, \, v\right)$$
Data: Korngold, E. et al. (1970)$$\cfrac{\mathrm{d}R(t)}{\mathrm{d}t} = \mathrm{ANN}\left(R(t), \, i, \, c_e, \, v\right)$$
Data: Korngold, E. et al. (1970)$$\cfrac{\mathrm{d}R(t)}{\mathrm{d}t} = \mathrm{ANN}\left(R(t), \, i, \, c_e, \, v\right)$$
Data: Korngold, E. et al. (1970)juliacon 2019